
Neural Ordinary Differential Equations
Tian Qi Chen∗, Yulia Rubanova∗, Jesse Bettencourt∗, David Duvenaud

∗Equal Contribution University of Toronto, Vector Institute

Introduction

We build a continuous depth residual network:

Residual Network ODE Network

5 0 5
Input/Hidden/Output

0

1

2

3

4

5

De
pt

h

5 0 5
Input/Hidden/Output

0

1

2

3

4

5

De
pt

h

ht+1 = ht + f (ht, θt)
dh(t)
dt = f (h(t), t, θ)

Memory Efficient
• no backprop through

solver operations

• no storing forward
pass intermediates

Adaptive Computation
• evaluations scale
with problem complexity

• solver monitors and
controls approximation error

Parameter Efficiency
• dynamics are parameterized

as continuous function of time

• nearby ‘layers’ automatically
tied together

Replacing Residual Networks with ODE-Net for Supervised Learning

ODE-net replaces ResNet blocks with

output =

∫ t1

t0

fθ(h(t), t, θ)dt

= ODESolve(input, fθ, t0, t1, θ)

where fθ is an MLP or conv layer

Statistics of a trained ODE-Net in Number of Function Evaluations

Test Error # Params Memory Time

1-Layer MLP† 1.60% 0.24 M - -
ResNet 0.41% 0.60 M O(L) O(L)

RK-Net 0.47% 0.22 M O(L̃) O(L̃)

ODE-Net 0.42% 0.22 M O(1) O(L̃)

Performance on MNIST. †(LeCun et al, 1998)

Reverse-mode automatic differentiation of ODE solutions

Adjoint State
State

Adjoint sensitivity method
requires solving augmented
system backwards in time.
All computed in single call
to ODE solver, concatenating
original, adjoint, other partials
into single vector. This
adjoint state is updated by
gradient at each observation.

Theorem (Instantaneous Change of Variables)

Change of variables theorem to compute exact changes in probability of samples
transformed through bijective f :

z1 = z + f (z0) =⇒ log p(z1)− log p(z0) = − log

∣∣∣∣det [I + ∂f

∂z0

]∣∣∣∣
Assuming that f is uniformly Lipschitz continuous in z and continuous in t, then:

dz

dt
= f (z(t), t) =⇒ ∂ log p(z(t))

∂t
= −tr

(
df

dz(t)

)

Continuous Normalizing Flows

Planar normalizing flow (Rezende and Mohamed, 2015):

z(t + 1) = z(t) + uh(wTz(t) + b)

log p(z(t + 1)) = log p(z(t))− log

∣∣∣∣1 + uT
∂h

∂z

∣∣∣∣
Continuous analog of the planar flow:

dz(t)

dt
= uh(wTz(t) + b)

∂ log p(z(t))

∂t
= −uT

∂h

∂z(t)

K=2 K=8 K=32 M=2 M=8 M=32

1

10 20 30

CNF
NF

2

10 20 30

CNF
NF

3

Target NF CNF

10 20 30

CNF
NF

Loss vs. K/M

Comparison of normalizing flows versus continuous normalizing flows. The model capacity of NF
determined by depth (K), while CNF can also increase capacity by increasing width (M).

Continuous-time Generative Time Series Modelling

µ
�

zt0
zt1

RNN encoder

Latent space
Data space

~

q(zt0 |xt0 ...xtN )
ht0 ht1 htN

ODE Solve(zt0 , f, ✓f , t0, ..., tM )

ztM

…
ztN

ztN+1

Observed Unobserved

x(t)

t0 t1 tN

Time

tN+1 tM

Prediction Extrapolation

t0 t1 tN tN+1 tM

x̂(t)

Computation graph of continuous latent time series model.

Recurrent Neural Network Neural ODE

Ground Truth
Observation
Prediction
Extrapolation

Neural ODE learns smooth latent dynamics from noisy observations.

zt0 ∼ p(zt0)

zt1, zt2, . . . , ztM = ODESolve(zt0, f , θf , t0, . . . , tM)

each xti ∼ p(x|zti , θx)

Learned latent dynamics distinguishes between spiral directions.

Conclusion

• Black-box ODE solvers as modelling component.

• New models for time-series, supervised learning, and density estimation.

• Adaptive evaluation and allows explicit control of tradeoff between computation
speed and accuracy.

• Derive instantaneous version of change of variables formula and develop
continuous-time normalizing flows.


